A Novel Anemia Management Protocol
Y Chait1, MJ Germain2, J Horowitz3, CV Hollot4, and RP Shrestha1

1Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA; 2 Western New England Renal & Transplant Associates, PC, Springfield, MA, 3Mathematics & Statistics, University of Massachusetts, Amherst, MA; 4Electrical & Computer Engineering, University of Massachusetts, Amherst, MA.

Objective
Report the performance of an adaptive protocol for management of anemia in end-stage renal disease design.

Background
• Anemia of end-stage kidney disease (ESRD) is characterized by multiple factors:
 • Endogenously produced erythropoietin (EPO) is inappropriately low for the level of anemia.
 • Reduced red blood cell lifespan.
 • EPO resistance.
 • Inflammation.
 • Loss of blood.
• Erythropoiesis is a dynamic process. Its interaction with an anemia management protocol results in a new dynamic system, whose behavior can be very different from that observed in pharmacokinetics/pharmacodynamics (PK/PD) studies.
• Current anemia management protocols fail to achieve desired response.
• Anemia management should be viewed as a feedback control system, with new protocols designed using feedback control principles.

Methods
Pharmacokinetics Model
• Single pool of EPO in blood, intravenous doses modeled as impulsive inputs, and Michaelis-Menten function capturing nonlinear clearance.

Pharmacodynamics Model
• Stimulatory effects of EPO on differentiation, maturation, and proliferation of hematopoietic stem cells into reticulocytes modeled using a nonlinear, time-delayed function of EPO concentration.
• Reticulocyte and RBC dynamics are described using cellular lifespan probability distributions.

Parameter Estimation
• Simulink Design Optimization Tool (The MathWorks, Inc.) for estimating nominal PK/PD parameters.
• Quantify uncertainty in PK/PD parameters.

Model Simplification and AMP Design
• Pharmacokinetics and cell production represented as nonlinear function of EPO dose.
• Apply feedback control principles (Quantitative Feedback Theory) to design individualized protocols that maintain target Hgb level in ESRD patients with different EPO responsiveness and time-varying erythropoiesis properties.

Results
• Hgb levels and EPO doses in subject #10. New AMP initiated at day 661.
• New AMP controls Hgb level to target with reduced EPO doses.

Discussion
• Model-based, feedback control principles offer an improved approach for designing individualized anemia management protocols which can achieve improved Hgb management with reduced EPO doses.
• Intercurrent events (e.g., inflammation, blood loss) place significant constraints on achievable AMP performance.
• We hypothesize that:
 • Short-term Hgb variability is largely due to fluid volume variations that cannot be controlled using anemia management protocols.
 • Long-term Hgb variability is largely due to poorly designed anemia management protocols.