Engineering Design of Robust Ultrafiltration Profiles in Hemodialysis

R Abohtyra, CV Hollot, J Horowitz, MJ Germain, Y Chait

Departments of Mechanical & Industrial Engineering, Electrical & Computer Engineering, Mathematics & Statistics, University of Massachusetts, Amherst, MA; Renal and Transplant Associates of New England, PC, Springfield, MA, Division of Nephrology, Baystate Medical Center, Springfield, MA, and the University of Massachusetts Medical School, Worcester, MA, Thadhani Lab of Clinical Research in Nephrology, Massachusetts General Hospital, Boston, MA.

Objective
To design individualized robust ultrafiltration rate (UFR) profiles to remove desired volume in a fixed time based on a patient’s fluid volume model that includes parameter uncertainty, critical hematocrit profile, and to minimize maximal UFR.

Background
- Fluid management remains a major challenge of hemodialysis (HD) care, with serious implications for morbidity and mortality.
- Fluid management is typically guided by blood pressure and online HCT measurements (Crit-line).
- The application of a constant critical hematocrit (HCT) limit to guide fluid removal is controversial and has yet to contribute to improved treatment outcomes.
- Ultrafiltration quality measures are currently being discussed by the Centers for Medicare and Medicaid Services, e.g., ultrafiltration rate (UFR) limit of 13 ml/hr/kg.
- Hard UFR limits can conflict with target volume removal; Fluid overload is strongly associated with adverse outcomes.
- Fluid volume models are imprecise; Microfiltration is often reduced during HD resulting in mismatch between actual HCT and model estimation.

Methods
- Fluid Volume Model: Intravascular and interstitial pools with flows governed by Starling forces, nonlinear microfiltration and lymphatic flows, and ultrafiltration. Fixed parameters.
- Individualized model estimation: First 30 minutes of HD treatment are used for model parameter estimation.

Results
- Model estimation: Estimated HCT vs measured HCT; Reduced microfiltration, not modelled, results in model underestimation of HCT.
- Model uncertainty: Accounts for imprecise model, parameter estimation errors, noisy measurements, and varying filtration during HD
 - Model parameters are assigned uncertainty range; here it is ±5% of estimated values.
- Individualized Robust UFR Profile Design: Linear optimization formulation to minimize maximal UFR, meet target volume removal and critical HCT profile constraints for the uncertain patient model:
 - Remove 2.94 L in 4 hours,
 - UFR < 13 ml/hr/kg (975 ml/hr for a 75 kg patient), and
 - Critical HCT < 110% of initial HCT then drops to 107% of initial value (based on clinical observations over several HD treatments for this

Conclusions
A new model-based method was developed for the design of individualized, robust UFR profile that accounts for patient’s model uncertainty, critical HCT profile, and maximal UFR limit.

Research sponsored by NIH/NIDDK Grant 5K25DK096006